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1. DETAILS OF ESTIMATION

Proof of Theorem 2.1. We consider the relation between beta and Binomial distributions

n∑
k=0

ck,n
Γ(n+ 2)

Γ(k + 1)Γ(n− k + 1)
xk(1− x)n−k =

n∑
k=0

αk

(
n

k

)
xk(1− x)n−k (1)

Notice that the formula in right hand side in (1) is the random Bernstein polynomial of

order n. Since q(x) is continuous on the closed and bounded interval [0, 1], it is uniformly

continuous and thus for any positive ε, there exists a δ(ε) such that |x − y| < δ(ε) implies

|q(x)− q(y)| < ε. Fix x ∈ [0, 1]. Let X1, . . . , Xn be a sample from Bernoulli(x) distribution.

Let x̂n be the sample average, x̂n =
∑n

i=1Xi/n. Then, it is easy to see Eq(x̂n) = qn(x).

Hence,

|q(x)− qn(x)| ≤ E|q(x̂n)− q(x)|+ |Eq(x̂n)− qn(x)|

= E

{
|q(x̂n)− q(x)|I(|x̂n − x| < δ(ε))

}
+ E

{
|q(x̂n)− q(x)|I(|x̂n − x| ≥ δ(ε))

}
≤ ε+ 2‖q‖∞P (|x̂n − x| ≥ δ(ε)),

where ‖q‖∞ = supx∈[0,1] |q(x)|. It follows from Chebychev’s inequality that

P (|x̂n − x| ≥ δ(ε)) ≤ x(1− x)

nδ(ε)2
≤ 1

4nδ(ε)2
for all x ∈ [0, 1].

Hence, we have supx∈[0,1] |q(x)− qn(x)| ≤ ε + 2‖q‖∞ 1
4nδ(ε)2

. Letting n→∞ and then ε→ 0

yields

lim
n→∞

sup
x∈[0,1]

|q(x)− qn(x)| = 0, (2)

where this implies that qn(x) converges q(x) uniformly (over [0, 1]). It follows from the

integrability of q(x) by continuity and well known triangle inequality that∣∣∣∣∫ p

0

q(x)− qn(x)dx

∣∣∣∣ ≤ ∫ p

0

|q(x)− qn(x)|dx.

From the result (2), we already know that given ε, there exists N such that |q(x)−qn(x)| < ε

for n > N (not depend on x). Therefore, when n > N ,∣∣∣∣∫ p

0

q(x)− qn(x)dx

∣∣∣∣ ≤ ∫ p

0

|q(x)− qn(x)|dx ≤ pε.
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Since maxp∈[0,1] p = 1, this implies that for any p ∈ [0, 1],

lim
n→∞

Qn(p) = lim
n→∞

∫ p

0

qn(x) =

∫ p

0

q(x)dx = Q(p),

which is what we want to prove. �

1.1 Details of Denoising

In practice, we have observed that the first number of orthogonal basis functions are relatively

smooth, but the later basis functions can be quite noisy, sometimes with high-frequency oscil-

lations. As we do not believe these oscillations capture meaningful features of the empirical

quantile functions, we regularize the orthogonal basis functions using wavelet denoising to

adaptively remove these oscillations.

Given a choice of mother wavelet function ϕ(p), wavelets are formulated by the operations

of dilation and translation given by

ϕj,l(p) = 2j/2ϕ(2jp− l)

with integers j, l indicating scale and location, respectively. We can decompose any arbitrary

function ψ⊥k (p) ∈ L2(Π(P)) into the generalized Fourier series as

ψ⊥k (p) =
∞∑

j=−∞

∞∑
l=−∞

dk,j,lϕj,l(p), (3)

where dk,j,l =
∫
ψ⊥k (p)ϕj,l(p)dp = 〈ψ⊥k , ϕj,l〉 are the wavelet coefficients corresponding to ψ⊥k .

Wavelet coefficient dk,j,l describes features of the function ψ⊥k at the spatial locations indexed

by l and scales indexed by j. A fast algorithm, the discrete wavelet transform (DWT), can

be used to compute these wavelet coefficients in linear time for data sampled on an equally

spaced grid whose size L is a power of two, yielding a set of L wavelet coefficients, with

Lj wavelet coefficients at each of J wavelet scales and L0 scaling coefficients at the lowest

scale. We apply this wavelet transform to the the basis functions ψ⊥k (p) sampled on an

equally-spaced fine grid on p, for example using a grid of size L = 210 = 1024 for our GBM

data.
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Functions can be adaptively denoised by shrinking these wavelet coefficients nonlin-

early towards zero (Donoho, Johnstone, Kerkyacharian and Picard 1995). Various shrink-

age/thresholding rules can be used to accomplish this, such as hard thresholding with a

threshold of σ
√

2 logL introduced by Donoho et al. (1995), which yields a risk within a log

factor of the ideal risk. In that case, the wavelet shrunken and denoised basis function ψ†k(p)

can be constructed as

ψ†k(p) =
J∑
j=0

Lj∑
l=1

d†k,j,lϕj,l(p), (4)

such that d†k,j,l = dk,j,l if |dk,j,l| > σ
√

2 logL and d†k,j,l = 0 If |dk,j,l| ≤ σ
√

2 logL. When σ is

unknown, it is often replaced by an empirical estimator that is the median absolute deviation

of the wavelet coefficients at the highest frequency level J .

1.2 Details of MCMC

Motivated by a belief that the covariate effects should be more regular than the empirical

quantile functions themselves, we assume sparsity-inducing priors on the B∗ak coefficients. We

use a spike-Gaussian slab (Lempers 1971; Mitchell and Beauchamp 1988) distribution. The

spike at 0 induces sparsity while the Gaussian prior applies a roughness penalty. Motivated

by the belief that certain quantlets are a priori more likely to be important for representing

covariate effects, we partition the set of K quantlet dimensions into H clusters of basis

functions, each with their own set of prior hyperparameters. This allows us, for example,

to allow a higher prior probability for certain quantlet dimensions to be important such

as the the Gaussian basis levels {ψ1, ψ2} and the quantlets explaining a high proportion

of the relative variability in the empirical quantile functions. Recalling that quantlets are

indexed in descending order of their proportion of relative variability explained, we can group

together the Gaussian coefficients as one cluster, and then split the rest sequentially into

H clusters each containing sets of basis functions whose relative variability explained are of

similar order of magnitude.

Let Π be a K × J matrix with element Π(k, j) = ξk(pj) and Φ be a K × J matrix with

element Φ(k, j) = ψ⊥k (pj) for k = 1, . . . , K and J = 1, . . . , J , where ξk(pj) and ψ⊥k (pj) are
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elements in DC and D⊥. Note that we use Gram-Schmidt to orthogonalize the basis set DC to

generate an orthogonalized basis set D⊥. Then, we measure the variability for each element

as diag(Λ) based on the spectral decomposition structure, Λ = ΦΠTΠΦT . We can split the

elements in ψ⊥k (·) ∈ D⊥ into H clusters each containing sets of basis functions sharing a

similar variability explained, where the hierarchical cluster algorithm on the variability is

used to determine it. Although we use the quantlets basis function ψk(·) which is obtained by

denoising and re-standardizing for the corresponding element ψ⊥k (·), the identical clustering

information is used in the estimation procedure.

Specifically, let K be a set of indices K = {1, . . . , K} and H be a set of indices H =

{1, . . . , H} such that K = ∪Hh=1Kh with Kh ∩ Kh′ = ∅ for h 6= h′, where Kh = {1 ≤ k ≤

K|f(k) = h} for the clustering map, f(k) = h. Let Hh = {π(k)|k ∈ Kh} ≡ {1, . . . , |Kh|} be

the ordered set consisting of the integers such that for all k and k′ ∈ Kh, if k < k′ implies

π(k) < π(k′). By defining the index hk,l to indicate the quantlets ψk as the lth component

of Hh within the h cluster, the prior on B∗ak is given by

B∗ak ≡ B∗ahk,l ∼ γahk,lN(0, τ 2ahkl) + (1− γahk,l)I0 (5)

γahk,l ∼ Bernoulli(πah),

where I0 is a point mass distribution at zero, and γahk,l is an indicator of whether the

kth quantlet basis coefficient is important for representing the effect for the ath covariate

within the h cluster as the lth component. The hyperparameter πah indicates the prior

probability that a quantlet coefficient in set Kh is important, and τ 2ahk,l the prior variance,

and regularization factor, for coefficient B∗ak conditional on it being chosen as important.

In order to fit model in the quantlet space model using a Bayesian approach, we also need

to specify priors on the variance components {σ2
k, k = 1, . . . , K}. We place a vague proper

inverse gamma prior on each diagonal element σ2
k given by σ2

k ∼ inverse-gamma(ν0/2, ν0/2),

where ν0 is some relatively small positive constants. Other relatively vague priors could also

be used. If one wanted to allow Σ∗ to be unconstrained, an Inverse Wishart prior could be

assumed for the K×K matrix. The likelihood funciton is given Q∗.k ∼ N(XB∗.k, σ
2
kI) in the
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projected space for each k = 1, . . . , K.

The parameters πah and τ 2ahk,l can be estimated using an empirical Bayes method, assum-

ing τ 2ak ≡ τ 2ahk,l = Vahk,lΓah for some parameters Γah, which allows for full flexibility in these

regularization parameters within the Kh group for the ath covariate. This structure also en-

ables us to integrate out the quantlets coefficients and compute the marginalized likelihood

for Γah and πah as:

l(πah,Γah) ∝(1 + Γah)
−

∑|Kh|
l∈Hh

γahk,l/2 exp

{
−1/2

|Kh|∑
l∈Hh

ζ2ahk,lγahk,l/(1 + Γah)

}
× (πah)

∑|Kh|
l∈Hh

γahk,l(1− πah)|Kh|−
∑|Kh|

l∈Hh
γahk,l .

On the marginalized likelihood, the MLEs of Γah and πahk can be obtained by

π̂ah =

|Kh|∑
l∈Hh

γahk,l/|Kh|, Γ̂ah = max

(
0,

|Kh|∑
l∈Hh

ζ2ahk,lγahk,l/

|Kh|∑
l∈Hh

γahk,l − 1

)

Ôahk,j =
π̂ah

1− π̂ah
(1 + Γ̂ah)

−1/2 exp

{
1

2
ζ2ahk,l

Γ̂ah

1 + Γ̂ah

}
, γ̂ahk,l =

Ôahk,l

1 + Ôahk,l

.

These empirical Bayes estimates can be computed for each iteration of the MCMC procedure.

The Bayes estimates of πah and τahk,l are given by π̂ah and V̂ahk,lΓ̂ah.

1.3 Details of Predicted PDF

If desired, one can construct the estimate of the conditional probability density function

given covariates X from

f̂(x|X) = M−1
M∑
m=1

δ/

(
XT β̂(m)(p)−XT β̂(m)(p− δ)

)
,

where δ is a fixed positive constant and x = inf (y : y ≥XT β̂(m)(p)). Note that the above for-

mula is derived from f(Q(p)))dQ(p)/dp = 1 by changing the variable. Remark that the con-

ditional quantile function XT
i β̂

(m)(p) for some samples may not enforce strict monotonicity,

which leads to the negativity density value for its computation. However, when we take the

coarse grid points for x with the sufficient gap between any two adjacent points, equivalently
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δ to be the large value, which would allow XT
i β̂

(m)(p)−XT
i β̂

(m)(p− δ) > 0, the valid proba-

bility density function is available. In practice, we use max (0, XT
i β̂

(m)(p)−XT
i β̂

(m)(p− δ))

as the differential for Q(p) for an arbitrary δ.

2. OTHER RESULTS FROM SIMULATION

2.1 Simulation for Basis Representation

We let N , T , G, D, M1, M2, M3, and M4 be random variables from the standard normal,

student-t, gamma, dirichlet distribution, and mixture distributions, respectively. We first

generated four profiles of quantile functions, QN(p), QT (p), QG(p), QD(p), QM1(p), QM2(p),

QM3(p), and QM4(p) defined on P = [δ, 1 − δ] and J fixed grid points {p1, . . . , pJ} ∈ P ,

where δ and J were set to be 1/1000 and 999, respectively. Specifically, we independently

simulated each Q(·)(p) according to the generating process

Q(·)(p) = inf (y : F(·)(y) ≥ p), (6)

following the normal distribution N(0, 1), student t distribution with one degree of freedom,

shifted gamma distribution with shape 3 and scale 1 to −3, dirichlet distribution with base

measure to be the kernel density estimator of the first observation in GBM data, two mix-

ture skewed-normal distributions for which the mixture components were SN(−3.06, 3.67, 0)

and SN(9.11, 7.89,−4) with 0.5 and 0.5 probabilities for one while SN(−7.1, 2.4, 0) and

SN(−3.11, 7.89, 4) with 0.3 and 0.7 probabilities for the other, and two mixture normal

distributions for which the mixture components were N(−2.5, 2.5), N(4, 3) and N(9.5, 2.1)

for one while N(−2.5, 1.5), N(4, 3.56) and N(9.5, 1.1) for the other with 0.3, 0.5 and 0.2

probabilities, respectively. To illustrate, two panels of Figure 2 show eight probability den-

sity trajectories for FN(y), FT (y), FG(y), FD(y), FM1(y), FM2(y), FM3(y), and FM4(y). We

see that each distribution has different characteristic in that FT (y) has heavy tails, FG(y) is

skewed to the right, FD(y) has high frequency, and FMk
(y) has multiple peaks for k = 1, . . . 4,

compared to FN(y), which is standard in this scenario.

We constructed a quantlets representation for each distribution as follows. We generated
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the parameter space as a set of a sequence pairs, Θ = {θk = (ak, bk)}11,881k=1 , uniformly sampled

on [0.1, 1000]2 and an overcomplete dictionary, DO = {ξk : θk ∈ Θ}, where ξ2 (Gaussian) is

not included in DO to allow for a fair comparison in this scenario so that PN⊥ is the identity

operator as the orthogonal complement to the empty space. We restrict the maximum value

of the parameter space as the total number of the probability gird points J and the minimum

value of the probability grid points p1. We prefer to have a large number of KO but restrict

its minimum as KO > J . This setting is motivated by the structure of the random Bernstein

polynomials (Petrone 1999; Bornkamp and Ickstadt 2009). We used the Lasso method to

find the individual dictionary, Di and used it as quantlets from DO for each distribution case.

Note that we did not need to find DU or DC because there was only a single observation for

each distribution case.

We compared our quantlets with other competing representations such as B-spline (Schumaker

2007), integrated spline (Ramsay 1988) denoted by I-spline and convex spline (Meyer 2008)

denoted by C-spline basis representations. In Figure 4, we see the shape of I-spline and

C-spline basis functions. To compare the different methods, we examined one type of perfor-

mance measure for prediction accuracy and computed the empirical mean integrated squared

error of the test data set as n−1
∑n

i=1(Q(·)(pi)
test − Q̂(·)(pi)

test)2, where Q̂(·)(pi) is the pre-

dicted basis representation built from the aforementioned training set of 300 grid points

and (Q(·)(p1)
test, . . . , Q(·)(pn)test)s’ are observations in the test set of 999 grid points for

each distribution case. We used a B-spline basis of order 4, degree 3 on 10 knots uni-

formly spaced in P to generate I-spline and C-spline in this simulation. Also, to investi-

gate the degree of monotonicity, we compute the degree of ε-monotonicity, defined to be

PMε =
∫ 1

0
I[Q̂(·)(p) − maxp′<p{Q̂(·)(p)} > ε]dp for some ε considered negligibly small in the

context of the scale of Y in the current data set. When PMε ≈ 0, it says a strong monotonicity

and we use the monotonicity measure 1− PM0.01 for each distribution.

Table 3 presents the empirical mean integrated squared error for each method calculated

and ε-monotonicity from the test data sets of 999 grid points on P . We see that our method

significantly outperformed the competing methods for all distribution cases. Although B-

7



spline method showed lower IMSE compared to other competing methods, it does not show

the monotone property in that it shows wiggly fitted regions near the curvature points.

Hence, we conclude that our method is better than the existing spline approaches. Figure

3 plots the true quantile functions (gray dot line) along with the fits for quantlets (red),

B-spline (dashed), I-spline (dot) and C-spline (dashed-dot) and shows that the quantlets

can be the best representation for the shapes of these quantile functions compared to all

others.

2.2 Other Additional Results from Simulations

There are additional results for the simulation conducted in the main paper. We ran the

MCMC algorithm for 2, 000 iterations, keeping every one after a burn-in of 200 and then,

transformed all the estimates in the quantlets space into the data space. The results are shown

in Figure 9 based on each method: (A) naive quantile regression method (separate classical

quantile regressions for each p by using rq function in quantreg R package (Koenker 2005)),

(B) naive quantile functional regression approach (separate functional regressions for each

subject-specific quantile p), (C) principal components method (quantile functional regression

using PCs as basis functions), (D) quantlet without sparse regularization, (E) quantlet with

sparse regularization, and (F) Gaussian model (quantlet approach but keeping only the

first two coefficients). Compared to the other methods, our method (E) provided smoother

estimators and tight 95% joint confidence intervals for all the parameters. Figure 11 depicts

the simultaneous band scores PSimBaS(p) for the two contrast functions associated with the

scale effect β3(p) and skewness effect β4(p), with regions of p. Since the two true contrast

functions β3(p) and β4(p) have one and two zero points while the null hypothesis is βa(p) =

0, respectively, as shown in Figure 9, those points need to be detected with the higher

PSimBaS(p) at their zero points (not reject the null hypothesis). Compared to the other

methods, our method (E) showed lower type II error at the level of significance, α = 0.05

(solid black line).

Table 4 includes true conditional moment parameters such as the mean, standard de-
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viation and skewness, and corresponding point and interval estimators for the four groups

derived from the closed form of the formulas in (see Section 2.7) for each method. Although

the performance of the point estimators seems to be similar for all cases, the performance of

the interval estimators is clearly better when using the quantlets basis approaches compared

to the naive approach because those intervals contain true parameters for the four groups.

Summarizing Gaussianity score for the four groups, assessed by the relative energy, is re-

ported in Table 5. We see that the first three groups not involved with the skew parameter

α can be explained as Gaussianity with the higher score whereas the fourth group, which is

involved with the skew parameter, is hard to explain by Gaussianity, where values for the

95% confidence intervals are reported in parentheses. Figure 5 reveals the quantlets basis

functions in the simulation.

Because our method involves a lot of computational burden, we investigated the compu-

tational aspect of our method. Figure 23 depicts the run time for computing the basis set as

the function of sample size (N) and probability grid size (mi) from the simulated data in the

multi modality scenario. We see that for the grid size, mi ≤ 28, the number of the subjects

does not yield the heavy computation. However, for the grid size, mi ≥ 210, the amount of

the computations is dramatically increased as the number of the subject increase. Hence,

we recommend to use the smaller number of the probability grids for the data set with the

large number of the observations.

2.3 Multi Modality Scenario

We also conducted the additional simulation based on multi modality scenario, in order to

see the performance of our method as a balanced assessment. Specifically, we generated

random samples for four groups of subjects whose mean quantile function was assumed to

be from four mixture distributions, where two mixture skewed normal distributions consist

of SN(−3.06, 3.67, 0) and SN(9.11, 7.89,−4) with 0.5 and 0.5 probabilities for one while

SN(−7.1, 2.4, 0) and SN(−3.11, 7.89, 4) with 0.3 and 0.7 probabilities for the other, and

two mixture normal distributions consist of N(−2.5, 2.5), N(4, 3) and N(9.5, 2.1) with 0.3,
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0.5 and 0.2 probabilities for one while N(−2.5, 1.5), N(4, 3.56) and N(9.5, 1.1) for the other

with the same probabilities.

Panels A, B and C of Figure 1 show the densities, mean quantile functions by group,

and quantile functional regression coefficient estimates, respectively, corresponding to these

distributions, where all observed quantile functions are depicted with the gray-lines in each

panel. All other settings in this simulation are the same to those of the first simulation for

the model equation, covariates, noise process, and sample size. We chose a common set, DC,

that retained 17 basis functions, which resulted in a near-lossless basis set with ρ0 = 0.997

(see KC = 17 in panel D). After orthogonalization, denoising, and re-standardization, and

the fitted quantlet projection almost perfectly coincided with the observed data for all of

the empirical quantile functions (panel E). After running the MCMC algorithm, posterior

estimate for each βa(p) is contained as the dashed-line in panel F of Figure 1.

As expected, Table 1 shows that our method (E) outperforms all other competing meth-

ods in that it leads to tighter bands with good coverage. Also, From Table 2, we see that

test results found using our method (E), were near identical to true results and our method

does not lose power relative to feature extraction approaches (G) when the distributional

differences are indeed contained in the moments, where (µ, σ, ξ) for each group is set to be

(−0.06, 5.30, 0.02), (−0.07, 6.40, 0.39), (3.05, 5.05,−0.05), and (3.05, 5.03, 0.07), respectively.

3. OTHER RESULTS FROM APPLICATION

There are additional results for the GBM study conducted in the main paper. Compared to

principal components basis function (Figure 6), the quantlets (Figures 5 and 8) have some

level of interpretability in that the first two basis functions define the space of all Gaussian

quantile functions (ψ1, and ψ2). We see that in Figure 7 orthogonal basis ψ⊥k (black line)

is wiggly up and down, compared to quantlets ψk (blue line). Also, note that the next two

quantlets for the GBM data seem to pick up on fundamental distributional characteristics

like the kurtosis and skewness (ψ3, and ψ4). For Gaussian data, only the first two basis

functions will be needed, while comparing with dimensions k = 3, . . . , K provides a measure
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Table 1: Results for Simulation 2: Area and coverage for the joint 95% confidence inter-

vals: (A) naive quantile regression approach, (B) naive quantile functional regression ap-

proach, (C) principal component method, (D) quantlet space without sparse regularization,

(E) quantlet space with sparse regularization, and (F) Gaussian quantlet space approach.

Type A B C D E F

β1(p) 3.528 (0.160) 2.041 (0.094) 0.296 (0.001) 2.821 (0.062) 1.012 (1.000) 2.813 (0.047)

β2(p) 3.505 (0.363) 1.981 (0.229) 2.360 (0.062) 2.648 (0.059) 1.492 (1.000) 2.918 (0.127)

β3(p) 3.367 (0.593) 1.954 (0.529) 2.855 (0.003) 4.282 (0.101) 1.488 (1.000) 0.536 (0.052)

β4(p) 3.384 (0.485) 1.988 (0.332) 2.292 (0.023) 5.039 (0.630) 1.556 (1.000) 0.601 (0.001)

Table 2: Simulation 2: Testing for conditional moment statistics in simulation: (A) naive

quantile regression approach, (B) naive quantile functional regression approach, (C) principal

component method, (D) quantlet space without sparse regularization, (E) quantlet space with

sparse regularization, (F) Gaussian quantlet space approach, and (G) feature extraction

approach, where the values in this table are the posterior probability scores derived by its

corresponding method for each test (the first column).

H0 True A B C D E F G

µ1 = µ2 µ1 = µ2 0.000 0.000 0.000 0.000 0.102 0.000 0.096

µ3 = µ4 µ3 = µ4 0.000 0.000 0.352 0.000 0.274 0.000 0.260

σ1 = σ2 σ1 6= σ2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

σ3 = σ4 σ3 = σ4 0.000 0.000 0.347 0.000 0.381 0.352 0.074

ξ1 = ξ2 ξ1 6= ξ2 0.000 0.000 0.328 0.120 0.004 0.438 0.000
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Figure 1: Simulated data in the multi modality scenario and their quantlet representations:

(A) density functions of the population, (B) mean quantile functions by group and (C)

quantile functional regression coefficients, (D) the near-lossless criterion varying with the

different number of basis functions, (E) the relation between empirical quantile functions

and quantlet fits, and (F) posterior estimates for each β(p).

of the degree of non-Gaussianity in the distribution.

The summarizing Gaussianity score for the specific or reference group assessed by the

relative sum is reported in Table 6. For instance, we see that the treatment group with the

event time less than 12 months can be summarized as the higher Gaussian score compared

to its reference group. It was hard to explain the quantile trajectories of the male group

or the group without mesenchymal status as a Gaussian quantile process because their

scores explained by the normal quantile process were not relatively high, which requires

a nonparametric quantile process generated by mixed beta distributions to fully understand

the entire quantile process.

The main results presented in the paper may depend on several modeling choices, con-

taining the number of quantlets basis functions and determining the prior specification for
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ν. Hence, we have conducted sensitivity analysis under different modeling choices. Fig-

ures 12 to 17 contain the posterior inference for functional coefficients for GBM data set:

for each covariate (6), the left panel includes posterior mean estimate, point and joint cred-

ible bands, GBPV in heading along with SimBas less then .05 (orange line), and the right

panel includes predicted densities for the two levels of the covariate along with the poste-

rior probability scores for the moment different testings, where Figure 15 presents the naive

quantile functional regression approach. We also see that it does not produce different the

results for varying ν in Figures 16 and 17. Tables 7 and 8 show specific results to assess

sensitivity for a wide range of possible values of K as well as different values of ν, where

they include global Bayesian p-values, run times along with area of the joint 95% confidence

intervals. Figure 20 depicts the functional coefficients if one naively applies regular (popu-

lation) quantile regression methods across various quantiles p, and demonstrates that this

approach gives nonsensical approaches for our application. As MCMC Diagnostic, Figure 18

contains Gewekes diagnostic histograms (Geweke et al. 1991) for four models. Under the null

hypothesis of convergence, we would expect a uniform distribution of p-values. We do not see

any enrichment of small p-values in these histograms, suggesting the chain converged. The

diagnostics are given for (A) model 1 (K=194), (B) model 2 (K=27), (C) model 3 (K=7),

and model 4 (K=2).

We lastly conducted a sensitivity analysis for lasso to see how selection of more or fewer

dictionary elements via larger or smaller lasso parameters effects the ultimate number of

quantlets. The three panels of Figure 24 show the common basis as the results from the

choices including the large penalty (A), current penalty (B), and small penalty (C) of the

lasso in GBM data. We see that the path of concordance value was different from each case

and the more sparse selection resulted in the smaller possible basis choices, and vice versa

for the reason that the possible basis choice is represented by the number of the points in

each panel. However, by the current near-lossless criteria (horizontal line), we can reduce

this variability to 15, 27, and 38 basis functions for each case. Also, from Figures 11, 21

and 22 in Supplementary material, we see that there are not dramatic changes on the final
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results.

4. INVESTIGATION OF MONOTONICITY

By definition, quantile functions are monotone non-decreasing, since any decreases in the

quantile function would correspond to negative probability densities. There are a number

of nonparametric smoothing methods in existing literature that impose monotonicity con-

straints on the functions, including integrated splines (Ramsay 1988) (I-splines) and convex

splines (Meyer 2008) (C-splines), which are adaptions of B-spline basis functions that enforce

monotonicity. A natural thought would be to consider utilizing basis sets like these for the

quantile regression framework that could strictly enforce the monotonicity constraints. We

considered this, but chose to use quantlets instead for several reasons.

As an illustration in Subsection (2.1), we generated empirical quantile functions from

eight different parametric distributions and then fit C-spline, I-spline, and quantlet models

to these data. The IMSE is orders of magnitude smaller for quantlets than I-splines or C-

splines. We consider the flexibility of the basis set to capture the features of the data and the

quantile functional regression coefficients βa(p) to be crucially important to this framework,

so even a basis that constrains strict monotonicity may not be preferable if it lacks sufficient

flexibility.

Second, from a modeling standpoint, in the quantile functional regression framework,

monotonicity would have to be enforced for any possible combination of covariates xa, a =

1, . . . , A, a cumbersome and impractical constraint to impose.

Third, since the quantlets are constructed from empirical quantile functions that are by

definition monotone non-decreasing, we have found that in practice, our quantile functional

regression framework tends to lead to virtually monotone predicted quantile functions for the

various combinations of covariates. While we would be concerned about a model producing

gross non-monotonicities, we are not especially worried about very small magnitude non-

monotonicities in the predicted values.

It may be possible to adapt our quantlet basis in some manner to enforce strict mono-

14



tonicity, but we leave that effort for future work.

To investigate the degree of monotonicity afforded by the model, we construct predicted

quantile functions for a broad range of covariate values (exhaustively if possible), and com-

pute the degree of ε-monotonicity, defined to be PMε (X) =
∫ 1

0
I[Q̂(p|X)−maxp′<p{Q̂(p|X)} >

ε]dp for some ε considered negligibly small in the context of the scale of Y in the current

data set. We have found in our simulations and real data analyses that PMε ≈ 0 ∀X, so

it appears that for practical purposes, there is not a strong monotonicity problem in the

models we have fit. If PMε (X) is large for a given model, then one should carefully assess

the model fit before scientifically interpreting its results.

We reported the empirical rates of the ε-monotonicity as 1 − n−1
∑n

i=1 P
M
ε (Xi) for our

simulation and GBM data sets in Table 9, where n is the number of the possible levels of the

predicted covariates, Xi. We first generated 30 additional predictors uij from the uniform

distribution defined on (0, 1) and replaced δij by uij for j = 2, 3, 4, and i = 1, . . . , 10 in the

simulation and generated 82 predictors as possible combinations of the discrete variables at

the age evaluated by minimum, Q1, Q2, Q3, mean, or maximum ages in the GBM data.

Based on the ranges of the observed data sets which were given as (−20, 20) and (0, 100)

for the simulation and GBM data, respectively, we set values for ε as shown in Table 9. We

see that the fitted quantile functions based on our approach show the monotonicity with the

small scale of ε compared to the range of the original data set. Figure 19 shows that the

predicted quantile functions with bands for each level of the covariates in GBM dataset. We

also see that they have ε-monotonicity in that their quantile functions have valid shape as

the quantile function (nondecreasing shape).

5. SOFTWARE FOR IMPLEMENTATION

We provide description of the overall procedure to fit the quantile functional model and

obtain inferential results for the simulation and real application. We upload QFM.zip

file includes all the plots, estimates, and other inference results to reproduce works in this

article. Among all files, we recommend to use the quantlets file, which produces the optimal
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quantlets basis function as the output for the input data set at a given probability grid of

values under the options (“irregular” or “regular”), one that computes empirical quantiles

based on the length of each observation and another that does it based on the common length

across all observations. The quantlets function requires the glmnmet function in glmnet R

package (Friedman, Hastie and Tibshirani 2010) to figure out the union set of dictionary,

gramSchmidt function in pracma R package (Borchers 2015) to obtain the orthonormal set

for the common basis set, and wst function in wavethresh R package (Nason 2010) to utilize

the non-decimated wavelet shrinkage method after the set of the overcomplete dictionary

was generated in the way described in the Section 2.

Once we obtain the quantlets basis function, we can deal with it as the basis function and

develop it to fit the functional regression model. There are several possible ways to estimate

the unknown parameters and obtain the posterior samples to produce the further inferential

results. One possible way is to fit the quantlet-space functional regression model as part

of the Bayesian functional mixed model (BayesFMM) packages that have been developed

in recent years (Morris and Carroll 2006; Zhu, Brown and Morris 2011; Zhu, Brown and

Morris 2012; Meyer, Coull, Versace, Cinciripini and Morris 2015; Zhang, Baladandayutha-

pani, Zhu, Baggerly, Majewski, Czerniak and Morris 2016; Zhu, Versace, Cinciripini and

Morris 2018; Lee, Miranda, Baladandayuthapani, Rausch, Fazio, Downs and Morris 2018).

We also mention WFMM executable as well as the BayesFMM packages, which is freely

available at

https://biostatistics.mdanderson.org/SoftwareDownload,

where it does not need to formulate the random effect structure in the quantile functional

regression model. To employ this, we need to create the input file WFMM-input.mat which

includes the empirical quantlets coefficients and design matrix structure. Such a file will pipe

into the WFMM software to fit our model. There is a key commend to run the WFMM

software in DOS window as the following:

wfmm WFMM-input.mat WFMM-output.mat > WFMM-log.log
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Remark that the input file should be placed in the same directory that the commands are

executed. WFMM-output.mat will be produced by the above commend and contain the

posterior samples of the quantile processes, which will be used for the further inference in R

or Matlab environments.

All our codes in QFM.zip file are just for independent functional linear regression,

while the FMM code can handle other structure including levels of random effects to model

interfunctional correlation and nonparametric function.
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Table 3: Results for the simulation 1: Empirical mean integrated squared error,

n−1
∑n

i=1(Q(·)(pi)− Q̂(·)(pi))
2 and monotonicity, 1−PMε were computed based on each basis

representation for distributions, where N , T , G, D, M1, M2, M3, and M4 indicate normal,

t(1), gamma, dirichlet, mixtures of SN(−3.06, 3.67, 0) and SN(9.11, 7.89,−4) with 0.5 prob-

ability, SN(−7.1, 2.4, 0) and SN(−3.11, 7.89, 4) with 0.3 and 0.7 probabilities, N(−2.5, 2.5),

N(4, 3) and N(9.5, 2.1) and N(−2.5, 1.5), N(4, 3.56) and N(9.5, 1.1) with 0.3, 0.5 and 0.2

probabilities distributions, respectively.

N T G D M1 M2 M3 M4

Quantlets 0.024 0.001 0.007 0.004 0.039 0.050 0.020 0.022

IMSE B-spline 0.032 0.029 0.135 0.057 0.108 0.166 0.074 0.094

I-spline 0.698 0.413 0.599 0.052 2.283 2.760 1.004 1.013

C-spline 0.203 0.140 0.414 0.460 0.548 0.692 0.343 1.660

Quantlets 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Monotonicity B-spline 0.979 0.996 0.888 0.976 0.992 0.973 1.000 1.000

I-spline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C-spline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Conditional moment statistics and 95% confidence interval in simulation: (A) naive

quantile regression approach, (B) naive quantile functional regression approach, (C) principal

component method, (D) quantlet space without sparse regularization, and (E) quantlet space

with sparse regularization.

True A B C D E

µ1 = 1 0.93 (0.86,0.99) 1.20 (1.18,1.21) 1.2 (0.86,1.53) 1.19 (0.83,1.54) 1.18 (0.85,1.52)

µ2 = 3 2.71 (2.63,2.79) 2.92 (2.91,2.94) 2.93 (2.61,3.24) 2.93 (2.57,3.29) 2.94 (2.60,3.30)

µ3 = 1 0.66 (0.59,0.72) 0.99 (0.98,1.00) 0.99 (0.66,1.32) 1.00 (0.64,1.35) 0.99 (0.64,1.34)

µ4 = 3 2.59 (2.52,2.65) 2.90 (2.88,2.91) 2.89 (2.56,3.22) 2.90 (2.54,3.25) 2.89 (2.54,3.25)

σ1 = 5 4.92 (4.84,4.99) 4.97 (4.96,4.98) 4.97 (4.84,5.11) 4.97 (4.89,5.05) 4.97 (4.9,5.05)

σ2 = 5 4.96 (4.85,5.06) 4.96 (4.95,4.97) 4.96 (4.83,5.11) 4.96 (4.89,5.03) 4.96 (4.88,5.04)

σ3 = 6.5 6.36 (6.27,6.46) 6.43 (6.42,6.44) 6.43 (6.29,6.56) 6.43 (6.35,6.51) 6.43 (6.36,6.51)

σ4 = 5 5.05 (4.94,5.14) 4.93 (4.92,4.95) 4.94 (4.82,5.07) 4.94 (4.86,5.01) 4.93 (4.86,5.01)

ξ1 = 0.00 -0.06 (-0.19,0.06) 0.01 (-0.01,0.02) 0.00 (-0.17,0.18) 0.01 (-0.21,0.22) 0.01 (-0.19,0.21)

ξ2 = 0.00 -0.10 (-0.23,0.02) 0.00 (-0.01,0.02) 0.00 (-0.16,0.17) 0.00 (-0.21,0.23) 0.00 (-0.21,0.22)

ξ3 = 0.00 -0.07 (-0.17,0.02) 0.00 (-0.01,0.02) 0.00 (-0.13,0.13) 0.00 (-0.16,0.17) 0.00 (-0.16,0.17)

ξ4 = −0.78 -0.91 (-1.11,-0.73) -0.74 (-0.76,-0.73) -0.74 (-0.95,-0.56) -0.74 (-0.97,-0.52) -0.74 (-0.96,-0.52)

Table 5: Normality score of estimates for conditional subgroup in simulation.

Group Estimate Percentage (95% CI)

(ξ, ω, α) = (1.0, 5.0, 0.0) β̂1(p) 68.8% (49.4, 88.4)

(ξ, ω, α) = (3.0, 5.0, 0.0) β̂1(p) + β̂2(p) 89.5% (78.5, 97.5)

(ξ, ω, α) = (1.0, 6.5, 0.0) β̂1(p) + β̂3(p) 81.9% (66.4, 94.9)

(ξ, ω, α) = (9.1, 7.9,−4.0) β̂1(p) + β̂4(p) 34.7% (30.1, 39.0)
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Table 6: Normality score of estimates for conditional subgroup in GBM application.

Quantlet Quantlet

Group Treatment Percent (95% CI) Reference Percent (95% CI)

Sex Male 63.3% (40.0, 85.2) Female 77.9% (59.2, 92.8)

Age 84 years 65.3% (44.7, 84.0) 60 years 73.2% (55.0, 89.1)

DDIT3 Yes 70.9% (44.9, 91.7) None 69.9% (51.5, 86.6)

EGFR Yes 71.4% (49.6, 90.0) None 71.3% (50.2, 89.0)

Mesenchymal Yes 78.4% (59.0, 94.0) None 61.3% (39.7, 82.3)

Survival status ≤ 12 months 80.6% (59.1, 96.2) > 12 months 63.8% (44.6, 81.7)

Figure 2: Density functions in simulation 1: panel (A) contains normal (skyblue), t(1)

(black), shifted gamma (3,1) (purple), and dirichlet (gray dot) and panel (B) contains mix-

tures of SN(−3.06, 3.67, 0) and SN(9.11, 7.89,−4) with 0.5 and 0.5 probabilities (black),

SN(−7.1, 2.4, 0) and SN(−3.11, 7.89, 4) with 0.3 and 0.7 probabilities (red), N(−2.5, 2.5),

N(4, 3) and N(9.5, 2.1) and N(−2.5, 1.5), N(4, 3.56) and N(9.5, 1.1) with 0.3, 0.5 and 0.2

probabilities (blue and green), denoted by E, F , G, and H, respectively.
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Table 7: GBM Results: Bayesian global p-values for quantlet models with various sizes of

basis set K.
K ρ0 ρ̄ ν0 Sex Age DDIT3 EGFR Mesenchymal Survival12 Run time

Model 1 546 .998 1.000 .006 0.031 0.284 0.020 0.646 0.173 0.102 9.32 min

Model 2 194 .997 1.000 .006 0.023 0.197 0.029 0.648 0.127 0.088 2.42 min

Model 3 101 .997 1.000 .006 0.018 0.196 0.051 0.629 0.159 0.080 1.30 min

Model 4 66 .996 .999 .006 0.017 0.271 0.018 0.646 0.188 0.106 46.20 sec

Model 5 50 .996 .999 .006 0.032 0.242 0.048 0.698 0.229 0.092 39.13 sec

Model 6 44 .996 .999 .006 0.027 0.239 0.023 0.657 0.175 0.097 33.11 sec

Model 7 42 .994 .999 .006 0.005 0.122 0.006 0.648 0.058 0.038 35.60 sec

Model 8 31 .993 .999 .006 0.008 0.177 0.009 0.627 0.116 0.061 26.19 sec

Model 9 27 .990 .998 .006 0.016 0.168 0.012 0.605 0.087 0.067 21.83 sec

Model 10 23 .989 .997 .006 0.036 0.242 0.014 0.684 0.128 0.076 18.78 sec

Model 11 19 .989 .997 .006 0.038 0.297 0.035 0.668 0.221 0.132 15.31 sec

Model 12 15 .988 .997 .006 0.019 0.226 0.020 0.683 0.103 0.111 12.89 sec

Model 13 13 .981 .996 .006 0.041 0.274 0.042 0.796 0.302 0.143 12.93 sec

Model 14 10 .981 .996 .006 0.036 0.294 0.027 0.694 0.218 0.113 11.97 sec

Model 15 9 .981 .996 .006 0.006 0.152 0.007 0.605 0.128 0.048 11.81 sec

Model 16 8 .964 .993 .006 0.027 0.239 0.025 0.640 0.129 0.104 10.65 sec

Model 17 7 .962 .993 .006 0.007 0.147 0.006 0.607 0.084 0.063 9.12 sec

Model 18 5 .860 .974 .006 0.014 0.160 0.009 0.561 0.096 0.063 0.022 sec

Model 19 2 .858 .966 .006 0.014 0.053 0.006 0.494 0.067 0.042 0.006 sec

Naive 1024 1.000 1.000 1.000 1.000 1.000 1.000 2.710 min

Model 9 27 .01 0.016 0.169 0.012 0.607 0.088 0.068 22.25 sec

Model 9 27 .0001 0.015 0.161 0.010 0.601 0.083 0.061 19.60 sec
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Table 8: GBM Results: Area of the joint 95% confidence intervals for quantlet models with

various sizes of basis set K.
K ρ0 ρ̄ ν0 Intercept Sex Age DDIT3 EGFR Mesenchymal Survival12

Model 1 546 .998 1.000 .006 17.373 15.028 32.168 25.436 15.919 15.511 14.707

Model 2 194 .997 1.000 .006 17.127 14.549 29.665 25.073 14.940 14.448 14.056

Model 3 101 .997 1.000 .006 16.680 14.397 30.862 32.653 15.015 15.288 14.498

Model 4 66 .996 .999 .006 18.154 15.729 33.493 25.821 15.295 15.391 15.665

Model 5 50 .996 .999 .006 18.184 15.772 32.420 30.657 15.700 15.801 15.117

Model 6 44 .996 .999 .006 17.183 15.654 32.230 26.074 14.955 15.221 15.048

Model 7 42 .994 .999 .006 14.621 12.503 26.807 22.012 13.023 12.269 12.860

Model 8 31 .993 .999 .006 15.948 13.392 29.069 23.708 13.981 13.699 13.566

Model 9 27 .990 .998 .006 15.747 13.035 26.578 22.607 13.819 13.807 12.933

Model 10 23 .989 .997 .006 17.151 15.533 31.429 24.489 15.319 14.935 14.368

Model 11 19 .989 .997 .006 19.168 17.205 36.168 28.363 16.637 16.385 16.799

Model 12 15 .988 .997 .006 17.176 13.822 30.512 23.948 14.784 14.109 14.297

Model 13 13 .981 .996 .006 19.953 16.687 34.823 28.207 17.134 17.192 17.060

Model 14 10 .981 .996 .006 19.087 16.097 33.559 27.918 16.082 16.100 16.433

Model 15 9 .981 .996 .006 16.848 13.388 27.394 22.433 14.079 14.100 13.028

Model 16 8 .964 .993 .006 16.922 14.165 30.335 25.136 14.903 14.424 14.194

Model 17 7 .962 .993 .006 14.724 12.679 28.202 22.669 13.407 12.965 13.339

Model 18 5 .860 .974 .006 15.679 13.513 27.982 22.483 13.584 13.361 13.288

Model 19 2 .858 .966 .006 15.170 12.845 26.967 21.397 12.859 12.525 12.448

Naive 1024 26.013 22.210 47.030 37.527 22.680 22.546 21.837

Model 9 27 .01 15.815 13.093 26.683 22.705 13.881 13.865 12.989

Model 9 27 .0001 15.627 12.934 26.392 22.435 13.708 13.702 12.835

Table 9: ε-monotonicity of quantile functions for conditional subgroup.

Simulation 1 Simulation 2 GBM data

ε = 0.001 ε = 0.01 ε = 0.03 ε = 0.05 ε = 0.1 ε = 0.5

Naive 25.8% 96.8% 0.0% 0.0% 0.0% 43.9%

PCA 100.0% 100.0% 35.4% 83.8% 90.0% 93.9%

Quantlets 100.0% 100.0% 100.0% 100.0% 93.9% 96.3%
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Figure 3: Basis representations based on different methods: representations for quantlets (red), B-

spine (dashed) I-spline (dot) and C-spline (dashed-dot) are given for the following quantiles, where

the gray dot line is the true quantile function in each panel: (A) normal, (B) t, (C) gamma and

(D) dirichlet, (E) mixture of SN(−3.06, 3.67, 0) and SN(9.11, 7.89,−4) with 0.5 probability, (F)

mixture of SN(−7.1, 2.4, 0) and SN(−3.11, 7.89, 4) with 0.3 and 0.7 probabilities, (G) mixture of

N(−2.5, 2.5), N(4, 3) and N(9.5, 2.1) and (H) mixture of N(−2.5, 1.5), N(4, 3.56) and N(9.5, 1.1)

with 0.3, 0.5 and 0.2 probabilities, respectively.

23



Figure 4: I-spline and C-spline basis functions: (A) I-spline and (B) C-spline.

Figure 5: Quantlets basis functions in simulation.
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Figure 6: Principal Component basis functions in GBM application.
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Figure 7: Wavelet denoising for 16 basis functions in GBM application: orthogonal basis

(black) and wavelet denoising basis (blue).
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Figure 8: Quantlets basis functions in GBM application.
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Figure 9: Simulation Results: Estimators and and 95% joint credible intervals for β1(p)

(black) β2(p) (red), β3(p) (blue), β4(p) (green), their corresponding true coefficients (brown,

orange, skyblue, and darkgreen, respectively), and fitted values by quantlets (gray) are de-

rived from the (A) naive quantile regression approach, (B) naive quantile functional regres-

sion approach, (C) principal component method, (D) quantlet space without sparse regu-

larization, (E) quantlet space with sparse regularization, and (F) Gaussian quantlet space

approach.
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Figure 10: Intraquantile correlation estimated empirically (A) and assuming independence

in the quantlet space (B) in GBM application.

Figure 11: Simulation Results: SimBaS for β3(p) (blue) and β4(p) (green) at all p ∈ P are

derived from the (B) quantile functional approach, (C) principal components method, (D)

quantlet space without sparse regularization, and (E) quantlet space with sparse regulariza-

tion, where vertical line (black) is significant level (0.05).
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Figure 12: Posterior inference for the model (K = 27 and ν0 = .006) in GBM application:

for each covariate (6), the left panel includes posterior mean estimate, point and joint cred-

ible bands, GBPV in heading along with SimBas less then .05 (orange line), and the right

panel includes predicted densities for the two levels of the covariate along with the posterior

probability scores for the moment different testings.
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Figure 13: Posterior inference for the model (K = 194 and ν0 = .006) in GBM application.
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Figure 14: Posterior inference for the model (K = 2 and ν0 = .006) in GBM application.
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Figure 15: Inference from the naive quantile functional regression approach (separate func-

tional regressions for each subject-specific quantile p) in GBM application.
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Figure 16: Posterior inference for the model (K = 27 and ν0 = .01) for in GBM application.
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Figure 17: Posterior inference for the model (K = 27 and ν0 = .0001) in GBM application.
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Figure 18: Gewekes diagnostic histograms for four models in GBM application. Under

the null hypothesis of MCMC convergence, we would expect a uniform distribution in the

p-values. We see no enrichment of small p-values in these histogram, suggesting chain

convergence. Summaries are given for models (A) model 1 (K=194), (B) model 2 (K=27),

(C) model 3 (K=7), and model 4 (K=2).
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Figure 19: Predicted quantile functions with the point and joint 95% credible interval for

the specific groups in GBM application: each row indicates the status of the sex and DDIT 3

whereas each column reports at the summary value of the age (min, Q1, Q2, Q3, and max).
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Figure 20: Inference from the naive quantile regression method (separate classical quantile

regressions for each p in GBM application.
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Figure 21: Posterior inference for the model (K = 15, λ = 10λ(c) and ν0 = .006) for in GBM

application.
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Figure 22: Posterior inference for the model (K = 38, λ = .1λ(c) and ν0 = .006) for in GBM

application.
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